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Abstract The effects of hydrogenation and aging on the

optical properties in porous Si (PS) layers were investi-

gated by using photoluminescence (PL) measurements.

When the hydrogenated PS layers were aged in air, the

intensity of the PL spectrum increased. The emission peak

for the hydrogenated PS layers shifted to higher energy

with decreasing H2/N2 ratio. The relation of the dehy-

drogenized states in the as-formed PS surface to the

quantum states of Si nanoparticles with relatively small

sizes is discussed. These results indicate that the optical

properties of PS layers are significantly affected by

hydrogenation and aging.

Introduction

The potential applications of optoelectronic devices utilizing

porous Si (PS) layers consisting of Si nanoparticles have

driven extensive and successful efforts to control precisely

the sizes and the shapes of the nanostructures [1, 2]. Visible

light emissions from PS layers have been particularly

attractive because of interest in their promising applications

in complete Si-based optoelectronic technologies [3]. Even

though PS layers have emerged as promising candidates for

potential applications in the fabrication of Si-based opto-

electronic devices, there are still many inherent problems

because the optical properties of the PS layer are not stable in

ambient air, a problem that must be solved before this

material can be used in industry. One of the most significant

problems in obtaining high-quality PS layers has been the

existence of large nonradiative defects in the PS layers [4].

Since hydrogen atoms can passivate dangling bonds or

defective bonds, hydrogenation treatment is very important

for improving the crystallinity of the epilayers [5–8]. The

effects of hydrogenation on the optical properties of semi-

conductor thin films have been extensively investigated [9],

and a significant increase in the photoluminescence (PL)

intensity of the PS layer has been achieved by hydrogenation

passivation of the nonradiative defects [10, 11]. Further-

more, since the structures of the PS layers can easily suffer

from variations in the surface states during aging in air [12–

16], investigations concerning aging of the PS layers are very

important for luminescent devices. Therefore, systematic

studies of the effects of hydrogenation and aging on the

optical properties of PS layers are very necessary before they

can be used in optoelectronic devices.

This paper reports data for the effects of hydrogenation

and aging on the optical properties of PS layers formed by

anodization. PL measurements were performed to investi-

gate the optical properties of the as-grown, hydrogenated,

and hydrogenated and aged PS layers. Dependence of the

optical properties on the H2/N2 ratio and the aging time in

PS layers was investigated.

Experimental details

The PS layers studied in this work were formed by using an

electrochemical anodization in a HF-based electrolyte. The
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resistivities of the boron-doped p-type Si (100) substrates

used in this experiment were 10 and 0.001 Wcm, respec-

tively. The Si substrates were alternately degreased in

acetone and methanol solutions at 27 �C for 20 min, rinsed

in de-ionized water, and etched in a mixture of HF and H2O

(1:10) at 27 �C for 2 min.

The anodization was carried out in a HF:C2H5OH (1:2)

solution at 300 K and at a constant current density of

10 mA/cm2 for 5, 10, 30, or 120 min. The anodized sam-

ples were rinsed with methanol for 2 min and dried under a

nitrogen gas blow. As soon as the anodization process was

finished, the samples were mounted onto a susceptor in the

chamber, and the surfaces of the PS layers were treated

with a hydrogen plasma utilizing a plasma-enhanced

chemical-vapor deposition. The samples were placed

downstream in a hydrogen plasma with an rf power of

10 W for 10 min at 80 �C. The hydrogenated PS samples

were put in polystyrene cases and aged in air. The PL

spectra were measured using a 75-cm monochromator

equipped with an GaAs photomultiplier tube. The excita-

tion source was the 3,250-Å line of a He-Cd laser, and the

sample temperature was kept at 300 K.

Results and discussion

A top-view scanning electron microscopy image depicts

that the PS layer formed by using the anodization method

exhibits an irregular porous structure, as shown in Fig. 1.

The typical thickness of the PS layer is approximately

20 lm. The shape, the size, and the depth of the pores in

the PS layers are significantly affected by the current

density and the time of anodization. The depth of the pores

in the PS layer increases with increasing anodization time,

resulting in an increase in the surface volume.

Figure 2 shows PL spectra at 300 K for the PS layers

formed from the p-type Si substrate immersed in

HF:C2H5OH for (a) 10, (b) 30, and (c) 120 min. The

dominant PL peak around 700 nm is attributed to emission

bands due to the wide band-gap distribution of the Si

nanocrystal assembly [1]. The broadness of the PL peaks

might originate from the various sizes of the nanoparticles.

While the PL intensity at 700 nm increases with increasing

etching time, the PL peak position does not significantly

change. The increase in the PL intensity with increasing

etching time might be attributed to the nucleation and the

formation of the pores in the PS layers, resulting in the

increase in the number of Si nanocrystals [16]. Therefore,

while the number of the Si nanocrystals in the PS layers

increases with increasing etching time, the size of the

nanocrystals dangling at the PS layer is independent of the

etching time. When the etching time becomes 120 min, a

dominant peak at 712 nm and a shoulder at 682 nm are

observed. The peaks at 712 and 682 nm are related to the

emission bands of large- and small-sized nanoparticles,

respectively.

Figure 3 shows that PL spectra at 300 K for the (a) as-

formed and the (b) hydrogenated PS layers. The etching

time of the PS layers is 5 min, and the H2/N2 ratio is 0.03.

One dominant peak appears at 650 nm with a Gaussian

distribution for the as-formed PS layer, and a weak peak

and a shoulder appears at 500 and 700 nm, respectively,

together with a dominant peak around 650 nm, for the

hydrogenated PS layer. After hydrogenation, the PL spec-

trum showed that new two exciton peaks appeared. The
Fig. 1 Top-view scanning electron microscopy image for the porous

Si layer formed on the p-type Si substrate
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Fig. 2 Photoluminescence spectra for porous Si layers formed from

p-type Si substrates immersed in a HF and ethanol solution for (a) 10,

(b) 30, and (c) 120 min
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exciton peak at 500 nm might originate from passivation,

due to hydrogenation, of the small-sized nanoparticles

existing at the pores in the PS layers. The small-sized

clusters are more sensitive to hydrogenation than the large-

sized clusters [17]. The shoulder at 700 nm is attributed to

an increase in the hydrogen concentration of the PS surface

after hydrogenation [5].

Figure 4 shows that the PL spectra at 300 K for the

hydrogenated PS layers treated with H2/N2 ratios of (a)

0.33, (b) 1, and (c) 40. The emission peak for the hydro-

genated PS layers shifted to higher energy with decreasing

H2/N2 ratio. Since the stability of the Si–N bond are higher

than that of the Si–H bond [18], the blue-shift behavior

with decreasing H2/N2 ratio might be attributed to an in-

crease in the number of Si–N bonds on the PS surface, as

shown in Fig. 4.

Figure 5 shows the PL spectra at 300 K for the (a)

hydrogenated PS layer without aging and for the hydro-

genated PS layers aged in air for (b) 5 days and (c)

10 days. When the hydrogenated PS layers were aged in

air, while the PL peak position did not dramatically change

after aging, the intensity of the PL spectrum was signifi-

cantly increased. The significant increase in the PL inten-

sity after aging might be attributed to the combined effects

of quantum confinement of the nanoparticles in the PS

layers and defects in the Si–O bonds covering the PS

surface [12]. When the hydrogenated PS layers were aged

for 5 or 10 days, the weak peak around 500 nm disap-

peared. These results indicate that the peak around 500 nm

of the PL spectrum for the hydrogenated and aged PS

layers might be related to the quantum states of the rela-

tively small-sized Si nanoparticles.
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Fig. 3 Photoluminescence spectra at 300 K for the (a) as-formed and

the (b) hydrogenated porous Si layers treated with H2/N2 ratio of 0.03
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Fig. 4 Photoluminescence spectra at 300 K for the hydrogenated

porous Si layers treated with H2/N2 ratios of (a) 0.33, (b) 1, and (c) 40
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Fig. 5 Photoluminescence spectra at 300 K for the (a) hydrogenated

Si layer without aging, and for the hydrogenated porous Si layers aged

in air for (b) 5 days, and (c) 10 days
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Summary and conclusions

The hydrogenation and the aging effects in PS layers

formed with an anodization method were investigated by

using PL measurements. After hydrogenation, the PL

spectrum showed that the emission peak attributing to the

passivation of the small-sized nanoparticles existing at the

pores in the PS layers. The emission peak of the PL

spectrum for the hydrogenated PS layers shifted to higher

energy with decreasing H2/N2 ratio. When the hydroge-

nated PS layers were aged in air, the intensity of the PL

spectrum significantly increased due to the combined ef-

fects of the quantum confinement of the nanoparticles in

the PS layers and defects in the Si–O bonds covering the

PS surface. These results can help improve understanding

of the effects of hydrogenation and aging in PS layers.
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